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Abstract— in this paper, we propose a markerless based 
approach to differentiate between two different human walking 
gaits, specifically, the normal walking versus tip toe walking. The 
markerless based approaches are suitable in many applications, 
such as screening of autistic children from normal ones based on 
their body movement patterns or detecting walking irregularities. 
We use a 3D Sensor to collect 3D skeletal data of subjects that 
represents their behavioral spatial data. Several features have 
been extracted and feature selection methods were used to 
determine the best subset of these features. The proposed 
classification approach has been implemented and tested on a 
group of 75 people reaching 86% CCR between tip toe walking 
and normal walking. 

Keywords— Gait Recognition, Motion Capture, Kinect, 3D 
Sensor, Tip-toe Walking;  

I.  INTRODUCTION 

Gait recognition and motion analysis have been studied for 
the past 3 decades especially for medical applications [1] 
[2][3][4] and bio-inspired robotics [5]. Marker-based 
approaches have been widely used since they can provide fairly 
accurate measurements using off-the shelf cameras or dedicated 
motion capture cameras [6][7]. However, these marker-based 
approaches are difficult to use to capture daily life activities in 
unstructured environments. Furthermore, they are hard to be 
used on general subjects. Consequently, the markerless-based 
approaches become important [8][9]. The invention of off-the-
shelf 3D sensors such as Microsoft Kinect™, which can detect 
and capture the motion of a subject’s skeleton, has provided a 
great opportunity to develop markerless-based approaches. 
There have been many studies working on motion capture and 
detection using these sensors [10] [11] [12].  

In this work, we are motivated by a specific application of 
gait recognition, i.e. using gait patterns to classify subjects and 
determine possible health issue. One of these health issues is 
autism spectrum disorder (ASD) with a high progression rate in 
recent decades. Autism Spectrum Disorder is a group of 
complex disorders which is considered as a neurodevelopmental 

disorder ([13] [14] [15]). Autism have wide range of different 
disabilities in social behaviors which can result in the rejection 
from the community and lack of proper learning progress. 
Autistic children like stereotypical movement such as tip-toe 
walking which can be used to screen them.  

Since the successful therapy of ASD depends on early 
detection of the disorder, developing early screening systems 
becomes crucial. Unfortunately, the current screening methods 
rely on expert evaluation of the children. The expert evaluation 
is labor intensive, not always available, and expensive. 
Consequently, the automatic approaches have been studied in 
the recent decade. For example in [16] EEG is taken from babies 
and applied machine learning techniques for screening autistic 
babies. In two projects, LENA [17] and [18], they focused on 
sound descriptors and used it to screen children with ASD. In 
[19], a marker-based approach is proposed to differentiate 
between autistic and non-autistic children performing a specific 
grab and walk task.  In [20] [21] and [22] studies on ASD 
diagnosis based on Karyotype and CMA genetics tests have 
been proposed. The need for experts and its costs are 
disadvantages of this methods.  Blood test [23] also has been 
proposed but it is at early stages of its test and needs actual blood 
test which may be expensive, needs specific level of expertise, 
and costly.  

To overcome the shortcomings of the above approaches, we 
have developed a markerless based approach which can be used 
to distinguish between tip-toe walking and normal walking. We 
use and off-the-shelf 3D sensor which makes the approach 
suitable for many applications. The approach has been 
successfully implemented and tested on 75 normal subjects. As 
one of its applications, it would be tested as an autism screening 
tool. 

The rest of this paper is organized as follows: In part II we 
introduce our approach to this problem. In part III we introduce 
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our test structure and system in addition to results. In part IV we 
inference on obtained results. 

II. THE PROPOSED APPROACH 

The intuition behind gait recognition using skeleton data is 
inspired from human gait recognition in which a human 
differentiates between tip toe walking and normal walking by 
observing the body and leg movements. For instance, Fig. 1 
shows a human walking and his hip movement along vertical 
direction. We expect to have different patterns for tip toe and 
normal walking. In the following the feature extraction and 
selection processes have been explained. 

A. Feature Extraction 

The feature extraction has been performed using expert 
knowledge to propose possible features. The expert assisted 
feature extraction was based on watching normal and tip-toe 
walkers and analyzing their motion patterns in time and 
frequency domains.  

Fig. 2(a) shows the height of the hip center and the step 
length while Fig. 2(b) shows the 3 joint angles for a leg. These 
variables are selected by an expert to extract the features from. 
The extracted features are divided into time and frequency 
domain categories. It should be mentioned that the step length is 
considered as the distance between the left ankle and the right 
ankle at their maximum distance along	�(�). 

1) Time-Domain Features: 
Table I shows 136 features extracted in time domain, in 

which HH stands for Height of the Hip. Each row shows the 
general title for a feature in which the mean, max, standard 
deviation and energy of the position, velocity, and acceleration 
of the feature are considered. 

It should be mentioned that many features would depend on 
the height of the subject. For instance, although the height of the 
hip of a subject would stay higher in tip-toe walking compared 
to normal walking, however, its value depends on the height of 
the subject. Consequently, to normalize it, the ratio of the height 
of the hip to the height of the subject is considered. This has been 
done for feature sets TD1, TD2, TD7, TD8, and TD9. In TD1, c 
is a constant determined empirically using experimental data.  

Two other visible differences between tip-toe walking and 
normal walking are in the height of the heel and in the step 
length. In tip-toe walking, the height of the heel is higher and the 
length of the step is shorter [26]. This fact has been considered 
in TD2 and TD3.  

TABLE I.  LIST OF TIME-DOMAIN FEATURES 

Feature 
Subset ID 

Feature Description 
# of 

features 

TD1 | HH| / (shoulder-to-ankle distance + c)  12 

TD2 difference between ankles and foots/height  12 

TD3 difference between ankles and foots/stalk size 12 

TD4 
The average of each of hip, knee, and ankle 
angles’ mean, max, STD, and energy over a 
gait cycle [27].  

48=4*4*3 

TD5 3  right leg angles  when a gait occurred 12=4*3 

TD6 3 right leg angles in all over of the path 12=4*3 

TD7 HH/head-to-ankle distance 12 

TD8 HH/hip-to-ankle distance 12 

TD9 HH/step length 4 

 

Finally, in TD4 the mean, max, STD, and energy of the each 
joint angle’s mean, max, STD, and energy, in a given gait cycle, 
is considered as a feature. In these features the velocity and 
acceleration of the joints have not been considered. It should be 
mentioned that we have assumed similar pattern between the 
right and left legs. Consequently, the features of one leg would 
be enough for feature extraction analysis. We use mean, max, 
STD and energy because these statistics represent unique 
behavior of the considered parameters. 

2) Frequency-Domain Features: 
The periodic nature of gaits suggests that frequency domain 

features may help in the discrimination between tip-toe walking 
and normal walking.  

 

Fig. 1: The height of the hip (y) and the path of a person 

      
(a)                           (b) 

Fig. 2: a) the walking configuration of a subject, b) the 3 angles for a leg.  
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For instance, we expect tip-toe walkers show different 
dominant frequency during walking. Thus we extracted 220 
frequency features as listed in Table II. 

TABLE II.  LIST OF FREQUENCY-DOMAIN FEATURES 

Feature 
Subset ID 

Feature Description 
# of 
features 

FD1 The top 5 highest and lowest frequencies of 
position, velocity, and acceleration of HH 

30=10*3 

FD2 The top 5 highest and lowest frequencies of 
position, velocity, and acceleration of height 
of the ankles  

60=10*3*2 

FD3 The top 5 highest and lowest frequencies of 
position, velocity, and acceleration of height 
of the knees 

60=10*3*2 

FD4 The top 5 highest and lowest frequencies of 
step length  

10=5+5 

FD5 The maximum and minimum 5 frequencies of 
6 angles of foots(3 for right and 3 for left) 

60=10*3*2 

 

B. Feature Selection  

Since there is a large number of features and small number 
of samples, we first evaluated each feature set’s discrimination 
power. Then the best feature sets are selected and feature 
conditioning, i.e. feature selection and feature combination, is 
applied to achieve better results. Finally, the best combination of 
features is used for classification. 

C. Classification  

For the classification purpose we tested several methods. We 
selected linear SVM as a simple well-suited method. MLP is 
chosen as a general function approximator (GFA) and Random 
Forest as one of the best ensemble solutions. It has been shown 
that linear Support Vector Machine (SVM) with stochastic 
gradient descent learning algorithm works the best. To train 
classifiers we use 10-fold cross-validation. We also used MLP 
with BFGS [24] quasi newton back propagation, to benefit from 

its global optimal solution, and Random Forest [25] supervised 
learning method, which is one of the best ensemble methods. 

III. IMPLEMENTATION AND RESULTS 

The novelty of this work is in determining features and 
developing a classification method that can use a markerless 
based, off-the-shelf, and low cost 3D sensor. Thus we selected 
Microsoft® Kinect® from among good alternatives such as 
Asus Xtion since it has been widely used and there have been 
good APIs, such as OpenNI, for research. It should be noted that 
our proposed approach is not limited to this solution and can be 
implemented on any 3D sensor. For the purpose of skeleton data 
collection we used Microsoft® Kinect® SDK on windows over 
OpenNI because of its accuracy of skeleton estimation. Due to 
many restrictions, such as the very large dataset and privacy 
issues, we have developed an in-house application to save data 
collected by Kinect, cover the face of the subjects, and keep a 
compressed video (up to 97% compression compared to the 
original Kinect video) for expert evaluation (Fig. 3). 

A. The experimental setup 

Fig. 4 shows the experimental setup in which the subjects are 
asked to walk in front of the Kinect diagonally. Each subject had 
four set of data, two were walking from left to right and two were 
walking from right to left, with respect to the Kinect’s X axis. 
The walk on each side consisted of one tip-toe walking and one 
normal walking.   

If a subject walks toward the Kinect, i.e. along the Z axis of 
the Kinect which is considered the normal configuration using 
Kinect for applications such as games, then detecting the tip-toe 
walking becomes hard since the ankle is not easily detectable. 
On the other hand, if a subject walks along the X direction, i.e. 
parallel to the Kinect, then the API can become confused and 
make mistakes in correctly detecting the left and right foot from 
each other. Thus the data can be fairly unreliable. Consequently, 
walking diagonally in XZ plane is the best configuration to 
detect the needed features for tip-toe walking classification. It 

 
Fig. 3: The system developed in the lab which hides the face of subjects to avoid privacy issues (the left and middle video stream). The left video stream is 

the raw RGB data while the middle one shows the skeleton overlapped on the raw image. The right video stream shows the extracted skeleton only. It is 
possible to extract specific part of the video streams and comment them (the case maker and new tag buttons).  
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should also be noted that in a natural setup, the subjects may 
move in any direction and it is better to not limit them to a 
specific direction. In such cases, the data which is closer to 
diagonal walking can be used for classification.  

In general, the trajectory �(�)  (Eq. 1) in XZ plane is 
considered and the motion in X and Z axes are mapped into this 
trajectory (Fig. 1). In other words, there would be a two 
dimensional data, i.e. y and	�(�), to extract the features from. 

�:	� ∈ [0, �] → 	�(�) = ��(�)� + �(�)�	 (1) 

B. The subjects 

To collect data, 75 students aged between 18-28 years old 
were asked to walk on front of the sensor. In cases that the 
subjects did not correctly performed tip-toe walking, which were 
hard to be detected even by humans and we call them low tip-
toe walkers, their data were excluded from the analysis. Also, 
the subjects who had bulky pants that interfered with the 
skeleton detection algorithm, which we call them mini skeleton 
samples, were eliminated from the analysis. Consequently, the 
total of 207 tip-toe walking samples were collected. The number 
of normal walking samples were higher than 207 which was 
enough for our analysis. 

IV. RESULTS 

To select the best features and train our classifier, we apply 
the z-score normalization and 10-fold cross-validation on the 
train data that made up by 80 percent of full data. The procedure 
repeated 100 times and in each iteration we randomize the 
sample data. Table III shows the classification results, i.e. CCR’s 
mean and STD, using SVM, MLP, and Random Forest (RF) 
classifiers using each feature set alone. Overall SVM performs 
better than MLP and Random Forest. It can be seen that feature 
sets TD4, TD5, and TD9 perform better than the others which 
suggest that we have to consider these three feature sets for 
feature selection phase.  

TABLE III.  CCR FOR EACH SET OF FEATURES 

Correct Classification Rate 

Feature set ID 

Number of 
Features 

Mean(STD) 
Linear 
SVM 

MLP RF 

TD1 12 61.6(8.2) 55.8(9.1) 57.7(8.2) 

TD2 12 63.5(8.6) 59.1(10.2) 59.8(9.2) 

TD3 12 65.0(8.3) 60.6(8.6) 60.1(9.4) 

TD4 48 81.2(6.6) 81.5(5.7) 79.2(6.8) 

TD5 12 79.7(7.1) 77.6(8.1) 74.1(6.7) 

TD6 12 63.1(9.2) 62.1(9.2) 66.3(8.6) 

TD7 12 60.7(8.1) 57.2(8.8) 55.9(9.8) 

TD8 12 48.1(10.6) 48.0(9.0) 49.3(9.1) 

TD9 4 70.7(7.4) 67.8(8.6) 64.6(9.8) 

FD1 60 53.1(9.6) 53.7(9.5) 58.6(8.3) 

FD2 60 49.7(8.8) 50.1(8.8) 55.7(7.1) 

FD3 30 53.0(9.1) 51.8(9.3) 56.8(8.7) 

FD4 60 50.9(9.1) 51.3(9.4) 54.3(8.7) 

FD5 10 51.4(9.0) 51.2(9.3) 56.7(8.5) 

 

After feature set evaluation, these three set of features are 
further evaluated using feature conditioning concepts, i.e. 
feature selection and feature combination, to achieve better 
results. First we apply feature selection on the top 3 feature sets 
and determined the most informative features in the current set 
using best first feature selection method. Afterward, we use 
feature combination of these feature sets.  Table IV shows the 
result of feature selection, i.e. rows 1 to 3, in which the best 
features in each feature set is selected. The results of the feature 
combination is shown in rows 4 to 7.  

TABLE IV.  THE FEATURE SELECTION AND FEATURE COMBINATION 

RESULTS 

Correct Classification Rate 

Feature Subset ID 

Number of 
Features 

Mean(STD) 
Linear 
SVM 

MLP RF 

TD4’ 5 80.7(5.5) 78.9(6.1) 81.1(6.1) 

TD5’ 4 82.3(6.1) 81.6(6.6) 77.9(7.3) 

TD9’ 3 69.3(6.8) 67.4(6.9) 64.6(8.7) 

TD4’+ TD5’ 9 86.8(5.7) 84.1(6.3) 84.8(4.9) 

TD4’+ TD9’ 8 78.8(5.9) 76.9(7.4) 81.3(6.2) 

TD5’+ TD9’ 7 80.9(7.1) 78.5(8.1) 76.0(6.7) 

TD4’+TD5’+TD9’ 12 83.4(5.7) 80.7(6.2) 81.9(5.8) 

V. DISCUSSION 

As it can be seen from Table III, the frequency-domain 
features do not have very discriminant power. The most 
important feature sets belong to the leg angles (TD4 and TD5) 

 

Fig. 4: The test setup in which the subjects walk on front of the 3D 
sensor 
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and the ratio of the height of the hip over step length (HH/step 
length). Table V shows the list of final features selected in the 
feature conditioning process. 

TABLE V.  THE FEATURE SELECTED IN THE FEATURE CONDITIONING 

PROCESS 

Selected TD4 features 
Selected TD5 

features 
Selected TD9 features 

Max of the means of �� Mean of �� Mean of HH/step length 

STD of the max of �� Mean of �� STD of HH/Step length 

Energy of the mean of �� Max of �� 
Energy of HH/Step 
length 

STD of energy of �� STD of ��  

Energy of STD of �� STD of �� 
 

 

These results matches human intuition since the best features 
are about the knee and ankle angles, i.e. �� and �� respectively. 
For instance, max of the means of �� shows the maximum of the 
mean of knee angle over several steps. In tip-toe walking, the 
knee angle should be much less than the knee angle in normal 
walking. 

Also, it is expected that the ratio of the height of the hip to 
the step length would be a discriminative feature since in tip-toe 
walking the hip moves more vertically, which is represented in 
the height of the hip, than horizontally, which is represented in 
the step length. In contrast, in normal walking the height of the 
hip moves less vertically than horizontally. Consequently, it’s 
mean, STD, and energy become important features for tip-toe 
walking classification.  

It should be noted that overall the combination of the joint 
angle features (subsets of TD4 and TD5) are more 
discriminative than the hip movement features. 

VI. CONCLUSION 

In this paper we introduced a markerless gait recognition 
approach in which the tip-toe walking can be discriminated from 
the normal walking. The approach has been implemented on an 
off-the-shelf non-intrusive 3D sensor, to distinguish normal 
walking from tip-toe walking which can be used in applications 
such as healthcare. The system has been tested on 75 normal 
people walked in two different gait patterns on front of the 3D 
sensor and their movement patterns have been extracted. We 
performed feature extraction and feature selection to determine 
the best subset of features that can perform the classification. We 
have currently reached 86.84% CCR using 9 features. 

In the next step, to improve the classification rate and reduce 
STD, we would perform further feature selection, classification, 
and partitioning approaches to determine the most suitable 
feature set.  

Also, we would test the approach on autistic children. We 
expect to have good results due to the symmetric gaits of 
children with ASD [28]. Finally, the in-house system developed 
for this purpose would be improved to be more intelligent to 

ignore low tip-toe and mini-skeleton walking. Finally, the other 
stereotypical patterns such as flapping and turning. 
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