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Abstract— Study of neural correlates of ADHD 
could potentially help us to develop an automated 
diagnosis system. In 2011, a rich and 
heterogeneous neuroimaging dataset was 
provided by the ADHD-200 consortium to be used 
for this purpose. Considering the fact that the 
brain functional connectome in ADHD subjects is 
altered compared to healthy controls; we 
hypothesized that local and global parameters of 
functional connectome extracted using graph 
theory from task free fMRI data could give us a 
good tool to identify ADHD subjects from healthy 
controls. 
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I.  INTRODUCTION  

Attention-deficit hyperactivity disorder (ADHD) is a 
prevalent and persistent neurodevelopmental disorder, 
characterized by excessive behavioral inattention  and 
disorganization or hyperactivity-impulsivity (American 
Psychiatric Association, 2013

1
). The disorder is 

frequently associated with several comorbid disorders, 
functional impairment and poor long-term outcomes 
(Dopheide and Pliszka, 2009

2
; Rommelse et al., 2009). 

However, despite substantial progress in 
understanding the  related brain systems, small effect 
sizes and variability of associations with 
neurobiological correlates limit clinical utility. 
The search for structural or functional neural correlates 
of ADHD, and consequently for potential biomarkers of 
the disorder, is crucial in the pursuit of its prevention, 
early detection and more effective treatment (Cuthbert 
and Insel, 2013

3
; Insel, Cuthbert, Garvey & et al, 

2010
4
). For this purpose, machine learning techniques 

can be applied on resting-state functional 
neuroimaging data (Linden, 2012

5
). 

Graph theoretical analysis is a promising approach to 
investigate brain structural and functional networks 
(Rubinovand and Sporns, 2010

6
). Descriptors derived 

from graph theory are measurements quantifying 
different characteristics of the network organization. 
When applied to task-free fMRI data, graph measures 
may be used to enhance our understanding about 
functional network dynamics (Damoiseaux,  
Rombouts, Barkhof & et al, 2006

7
). Resting state 

networks (RSN) are characterized by consistent 
correlations with the spontaneous fluctuations of the 

BOLD signal among certain brain regions. Among 
several RSNs identified by fMRI analysis, specifically 
sensory-motor, fronto-parietal, salience and default 
mode networks (DMN) have been implicated in ADHD 
pathophysiology (de La Fuente, Xia, Branch and Li, 
2013

8
). Studies have introduced abnormal interactions 

within distinct RSNs as a key factor contributing to 
various neuropsychiatric disorders. The abnormalities 
have been particularly reported in the DMN (Buckner, 
Andrews-Hanna, and Schacter, 2008

9
). 

Neuroimaging data analysis based on graph theory 
has recently been applied to categorize atypical 
neurodevelopment processes. Investigations 
performed by Lynall et al.

10
 and Fornito et al.

11
 

demonstrated suitability of graph-based approach 
when they evaluated networks of patients with 
schizophrenia. In addition, application of graph theory 
has been very successful in the study of ADHD. Wang 
et al. 

12
 described differences in small-world measures 

in children with ADHD when compared to typical 
development (TD) controls. Fair et al. 

13
 have identified 

neural substrates associated to control networks that 
may contribute to the high heterogeneity of ADHD, 
using the community detection method. More recently, 
Tomasi and Volkow 

14
 have used a data-driven graph 

theory approach to investigate functional connectivity 
between a large sample of ADHD children and TD 
controls. Higher connectivity was found in reward-
motivation regions such as ventral striatum and 
orbitofrontal cortex. In contrast, lower functional 
connectivity was found in regions of dorsal attention 
such as superior parietal cortex and unexpected 
functional attributes of precuneus were observed 
comparing neuroimaging data of ADHDs with typically 
developed controls. 
In this study, we investigated changes in local and 
global parameters of the brain functional network due 
to ADHD using graph theoretical approach. We 
hypothesized that ADHD individuals could be 
distinguished from TPDs based on these measures.  
The findings may help us to pave the way towards an 
automatic screening method. 

 

II. METHODOLOGY AND EXPERIMENTAL DESIGN 

ADHD is a psychiatric disorder characterized by 
impulsiveness, inattention, and hyperactivity. This 
condition affects about 5% of children and 
adolescents worldwide (Polanczyk et al., 2007

15
).Data 
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analyzed in this paper came from the ADHD-200 
dataset, comprising data  from  973 participants  (for 
more  details, see ADHD-200-Webpage). Children 
with ADHD were recruited through the New York 
University Child Study Center (NYU). We enrolled 28 
children with ADHD. 
Automated ADHD diagnosis protocols were tested on 
data from the ADHD-200 Global Competition dataset. 

 

III. PARTICIPANTS 

Our Training Data set included 58participants. In this 
study, we included 28 ADHDs (21male, 7 ± 12 years 
old, 18 right hand) and 30 healthy controls (15 male, 7 
± 12 years old, 18 right hand) from the ADHD-200 
dataset specially form dataset provided by the NYU. 

The ADHD-200 dataset also included other non-
imaging data including gender, age, Handedness, 
verbal IQ, Performance IQ and Full IQ. Further details 
about this dataset can be obtained at the ADHD-200 
consortium website. 
The cognitive measures including verbal IQ 
(HC=112±16.04, ADHD=110.10±11.09), performance 
IQ (HC=105.63±15.01, ADHD=105.35±14.16), Full 
score IQ (HC=110.33±15.33, ADHD=108.60± 13.04. 
As shown in Table1, the selected groups were not 
significantly different in terms of age, gender, 
handedness, verbal IQ and performance IQ. 
On the other hand, ADHD measures including Index, 
Inattentive, Hyper/Impulsive scores exhibited highly 
significant differences between the groups. 

 
Table 1. Characterization of control (n=30) and ADHD (n=28) populations 

 
ADHD Control Statistics 

(Mean±SD), Range P-value T-Value 

Gender 21 male 15 male 0.051 -1.9939 

Age (9.63±1.40), (7-12) (9.57±1.38),), (7-12) 0.8708 -1.633 

Handedness 18 right hand 18 right hand 0.4029 -0.8428 

ADHD Index (73.17±9.39), (58-86) (43.86±4.22), (40-57) 0.3188*10(-22) -0.149649 

Inattentive (70.39±8.35), (56-90) (43.93±4.47), (40-58) 8.193*10(-21) -0.14653 

Hyper/Impulsive (74.17±11.03), (54-90) (46.31±6.67), (41-66) 4.155*10(-16) -0.113254 

Verbal IQ (110.10±11.89 ),(82-141) (112.7±16.04 ), (85-143) 0.5045 0.6718 

Performance IQ (105.35± 14.16),(79-129) (105.633±15.01 ),(72-136) 0.9448 0.0695 

Full IQ (108.60± 13.04),(78-133) (110.33±15.33),(80-142) 0.6583 0.4446 

 

IV. NEUROPSYCHOLOGICAL MEASUREMENTS 

A. Imaging acquisition 

All images were collected using 3T Siemens system 
(SIEMENS MAGNETOM Allegra syngo MR 2004A). 
Each participant underwent a T1-weighted structural 
MRI(Scan Time: 8:07) and a task-free fMRI 
scan(Scan Time: 6:00).  High-resolution T1-weighted 
structural MRI was acquired using magnetization 
prepared rapid gradient echo sequence (MPRAGE) 
(continuous sagittal slices, TR/TE/TI = 2530 / 3.25 / 
1100 ms, flip angle = 7˚, isotropic voxel size = 
1.3×1.0×1.3 mm3). A 6-min task-free fMRI were 
acquired using a single-shot EPI sequence (TR/TE = 
2000/15 ms, flip angle = 90˚, voxel size = 3.0×3.0×4.0 
mm3, Bandwidth= 3906 Hz/Pixel), During acquisition, 
participants were asked simply to remain still, close 
their eyes, think of nothing systematically.  
  

B. Tf-fMRI preprocessing 

 Data pre-processing was carried out using both 
analysis of functional neuroimaging (AFNI) 
(http://afni.nimh.nih.gov/afni/) (Di Martino et al, 
2008)

16
,(Shehzad et al., 2009)

17
,and fMRIB software 

library (FSL) (Oxford Centre for Functional Magnetic 
Resonance Imaging of the Brain Software 
Library,www.fmrib.ox.ac.uk) (Smith SM et al. 2004)

18
 

(Woolrich MW et al. 2009)
19

(Jenkinson M et al. 
2012)

20
. 

Seven different preprocessing strategies have been 
evaluated. However, for all the preprocessing 
strategies, these data underwent a few established 
preprocessing steps. Initially, the first 3 images where 
removed to avoid T1 effects, despiked, slice-time 
corrected,3d motion corrected, nuisance regression 
with motion parameters, registered to MNI152 (using 
the T1 structural image). Registration to MNI space 
was visually inspected for each subject. Spatial 
smoothing was not performed in order to not extend 
blood oxygen level dependency (BOLD) signal 
between different regions of interest (nodes). 
Additionally, motion parameters, as well as the 
average BOLD signal of cerebro spinal fluid (CSF), 
white matter (WM) and whole brain    where extracted 
for subsequent use. 

C. Brain anatomical parcellation 

To measure the functional connectivity among 
regions, the brain was first parcellated  into 126 
anatomical regions of interest, including 114 cortical 
regions derived from the 17 functionally parcellated 
networks (Yeo BT et al. 2011

21
) and 12 subcortical 

regions from automatic anatomical labeling (AAL) 
template (Tzourio-Mazoyer N et al. 2002

22
). This 

parcellation scheme is referred to as ROI 126. 
Considering different anatomical parcellation may lead 
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to different result in brain network analysis (Zalesky A 
et al. 2010

23
), we also defined the brain nodes using 

the AAL template which is composed of 116 cortical 
and subcortical regions. 
 

D. Brain connectivity Networks 

A network is a collection of nodes and edges, where 
nodes indicate basic elements within the system of 
interest and edges indicate the associations among 
those elements. An accurate method for defining the 
most essential elements of a network (i.e., nodes and 
edges) is vital for a network (i.e., nodes and edges) is 
vital for network construction. Specifically, for brain 
networks, they can be described at different spatial 
levels, such as microscale, mesoscale, and 
macroscale or large-scale (Sporns et al., 2005

24
). 

Given technical limitations and computational 
demand, most current studies focus on the 
macroscale or large-scale brain networks. In this 
review, we will also concentrate on the macroscale 
brain networks. 
 

E. Graph theoretical approaches 

Graph theory is the natural framework for the exact 
mathematical representation of complex networks. 
Formally, a complex network can be represented as a 
graph by G(N, K), with N denoting the number of 
nodes and K the number of edges in graph G. 

1) Nodal and global graph ,measures 

We use the Brain Connectivity Toolbox in Matlab 
(http://www.brain-connectivity-toolbox.net)(Rubinov 
and Sporns,2010

25
) to compute weighted global and 

nodal graph theoretical metrics. 
Global metrics were clustering coefficient (CC) and 
local efficiency, which measure the degree to which 
neighbors of a node are connected to each other; 
characteristic path length (CPL), which represents the 
average number  of edges needed to get from any 

node in the network to any other node in the network; 
global efficiency, which is similar to the inverse of CPL 
but can be computed for networks that are not fully 
connected, normalized CC and CPL (gamma and 
lambda), which are calculated as a ratio  of CC or  
CPL to  the average CC or  CPL. 
Degree is a straight and intuitive way to quantify 
nodes centrality, and it is defined as the number of 
edges connected to a particular node. The closeness 
centrality is the average distance between a given 
node and all other nodes of the network. 
Betweenness quantifies the influence of a node and is 
defined as the number of shortest paths passing 
through it. 

2) Small-World 

The small-world (Watts and Strogatz, 1998
26

) is an 
important model to characterize the organization 
principles that govern a remark- able variety of social, 
economic, and biological complex networks. A small-
world network can be described by high local 
clustering, characterized by a high clustering 
coefficient, Cp, and low minimum path length between 
any pair of nodes, characterized by a low 
characteristic path length, Lp. 

3) Network effiiency 

Efficiency is a more biologically relevant metric to 
describe brain networks from the perspective of 
information flow, which can deal with the disconnected 
graphs, nonsparse graphs or both (Latora and 
Marchiori, 2001

27
; Bassett and Bullmore, 2006

28
). 

4) Nodal centrality 

Nodal centrality quantifies how important a node is 
within a network. Several different metrics exist for 
measuring nodal centrality, such as degree centrality, 
nodal efficiency (Achard and Bullmore, 2007

29
), 

closeness centrality (Freeman, 1979
30

), and 
betweenness centrality (Freeman, 1977

31
). 

Fig1 . Schematic of study design
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F. Statistical analysis 

1) Network thresholding 

A matching strategy such as using the same cost 
threshold should be decided prior to statistical 
analyses between groups of subjects (Bernhardt BC 
et al. 2011

32
; Zhang Z et al. 2011

33
). 

The integral of measures at the selected range were 
then calculated as summary metrics for comparing the 
nodal measurements (Gong G et al. 2009

34
). Finally, 

to examine the effects of brain anatomical parcellation 
methods on topological properties, all analyses were 
repeated using AAL116 ROIs and results or both 
global and nodal properties were presented in 
supplementary materials. 

2) Group differences in network global metrics 

To examine the group difference of global and local 
efficiency of functional connectome, we employed a 
general linear model (GLM) with age and handedness 
as covariates of nuisance to test whether there is 
significant difference between groups (p<0.05). The 
GLM was applied on both integrated global metrics 
and a range of network cost. 

3) Pattern recognition 

Pattern recognition methods based on machine 
learning techniques have shown to be a promising 
approach to the analysis of neuroimaging data

35
. 

Support vector machine (SVM)
36

 and  k nearest 
neighbor rule (KNN) are two of the most frequently 
used methods in this field, given their robust 
properties when dealing with high dimensional 
multivariate data in addition to providing predictions 
for each individual case. In other words, given a set of 
features (e.g., brain measurements) and a label (e.g., 
healthy and patient), SVMs are used to learn a 
function, which maps the set of features to their 
respective labels within a training dataset. Thus, given 
a new set of features produced from an unseen 
observation, SVMs are able to provide a predicted 
label for this novel observation. 
Graph theory descriptors can be used as predictor 
variables (i.e. features) in a machine-learning 
framework. Merging graph theoretical approaches and 
machine learning techniques might provide a better-
adjusted way to scrutinize the impairment of RSNs in 
ADHD as well as mapping predictions to a single 
individual case. 

 

 
Fig 2. Group differences in brain network global metrics 

 

G. Results 

1) Group differences in network global metrics  

Comparison between ADHD and HC group revealed 
no significant difference in global characteristic of 
functional connectome. 
The ADHD group showed lower global efficiency and 
lower global clustering coefficient. in comparison to 
other group. However, between-group differences 
were not statistically significant (p>0.05). The same 
comparison was performed for AAL 116 parcellation 
scheme that the same results were observed.(Fig 2.) 

2) Group fifferences in brain network nodal metrics 

In terms of nodal metrics of functional connectome of 
ROI 126 parcellation scheme, the ADHD compared to 
HC had incresed Closeness in the ParaHippocampal  
 

gyrus _L (PHG-L), Cerebelum_9_L (CER-9-L), 
Cerebelum_9_R (CER-9-R) and decreased 
Betweenness in the Inferior Parietal_R (SP-R), 
ParaHippocampal gyrus _L (PHG-L), Pallidum_L 
(PAL-L), Cerebelum_4_5_R (CER-4-5-R), 
Paracentral_Lobule_R (PCL-R) and decreased in the 
Calcarine_L (CAL-L), Calcarine_R (CAL-R), Lingual 
gyrus_R (LING-R), Supplementaly Motor Area _L, 
(SMA-L)  Heschl gyrus _L (HES-L), Heschl gyrus_R 
(HES-R) , decresed Degree Centrality 
ParaHippocampal gyrus _L (PHG-L), Superior 
Temporal Pole_L (STP-L), Cerebelum_4_5_R (CER-
4-5-R),   and increased Degree Centrality in 
Calcarine_L(CAL-L), Calcarine_R (CAL-R), and 
reduced clustering-coefficient in the Calcarine_L(CAL-
L), Calcarine_R (CAL-R),, Lingual gyrus_R (LING-R), 
Supplementaly Motor Area_Left, (SMA-L) Heschl 
gyrus _L (HES-L), Heschl gyrus _R (HES-R) 
(uncorrected p<0.05) (Fig 3,Table 2).  
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Fig3 . Group differences in brain network nodal metrics 

Table2. Group differences in brain network nodal metrics 

Graph Measure Region P-value T-value 

Closeness 

Left ParaHippocampal 

Left Cerebelum_9 

Right Cerebelum_9 

0.023192* 

0.028297 

0.050979 

2.338 

2.2756 

2.0172 

Betweenness 

Right Inferior Parietal 

Left ParaHippocampal 

Left Palladium 

Right Cerebellum (4,5) 

Right Paracentral Lobule 

0.003359* 

0.003963* 

0.007688* 

0.027273 

0.048424 

-3.0714 

-3.0128 

-2.7711 

-2.2704 

-2.0202 

Clustering Coefficients 

Left Calcarine gyrus 

Right Calcarine gyrus 

Right Lingual 

Left Superior motor area 

Left Heschl 

Right Heschl 

Left Lingual 

0.00551* 

0.007835* 

0.014442* 

0.030245 

0.039881 

0.042302 

0.055522 

-2.894 

-2.764 

-2.5292 

-2.2266 

-2.1068 

-2.0808 

-1.9578 

Degree Centrality 

Left ParaHippocampal 

Left  Calcarine gyrus 

Right Calcarine gyrus 

Left superior Temporal pole 

Right Cerebelum_4_5 

0.003585* 

0.006728* 

0.009629* 

0.027721 

0.028489 

-3.0484 

2.8207 

2.6862 

-2.2636 

-2.252 

Nodal Efficiency ns ns ns 

     *: pval<0.05, FDR corrected; ns: not significant 

3) Evaluating classification performance 
Comparing the value of different classifiers requires a 
measure capable of representing the utility of one 
classifier over another. One natural measure is the 
accuracy which quantifies the probability that the 
classifier will make a correct prediction of ADHD vs. 

TDC. However, under differing practical scenarios, it 
may be more important to be confident that the 
classifier provides a correct diagnosis of ADHD 
positive (high true positive rate) or that the classifier 
provides confidence in ruling out an ADHD positive 
diagnosis (low false positive rate).

  

Table 3. Classification Result 

Nodal 

efficiency 

Degree 

Centrality 

Clustering 

Coefficients 
Betweenness Closeness Classifier 

0.4121 0.7742 0.5348 0.6424 0.7606 KNN 

0.6045 0.7227 0.5314 0.6712 0.4136 SVM 
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 H. Discussion and conclusion 

In general, there was no significant difference 
between the control group and ADHD in terms of 
global measures. This finding is inconsistent with 
some of the previous studies (Mostofsky, 2006

37
; 

Ricardo Sato, 2013
38

) which partly lies on 
heterogeneity of the ADHD ( Wåhlstedt et al., 2009)

39
. 

Nevertheless, our results showed that nodal metrics 
such as centrality of the regions (closeness, 
betweenness and degree) as well as their local 
connectivity (clustering coefficients) present significant 
difference between two groups. These results are in 
line with other studies reports that have used different 
techniques 

40,41
. The results may represent a possible 

neural basis for some of the motor and intentional 
deficits commonly found in ADHD. 
We observed alteration in terms of centrality of the 
cerebellum (increase of closeness at Left and right 
Cerebelum-9 , decreased betweenness and degree 
centrality at Right Cerebelum-4-5  in ADHD group. 
The cerebellum is often described as a structure 
involved in motor coordination and numerous 
cognitive and behavioral functions which are disrupted 
in ADHD. For example, patients with cerebellar 
lesions or atrophy have been found to show deficits in 
ability to shift their attention, with visuospatial 
processing, and with planning (Akshoomoff & 
Courchesne, 1994

42
; Golla, 2005

43
). Neuroimaging 

studies on patients with cerebellar damage have also 
indicated involvement of cerebellum in temporal 
information processing, working memory and 
executive functioning abilities (Ivry et al, 2002

44
; 

Schmahmann, 2004
45

). In a classic study on the 
neural correlates of motor and non-motor cerebellar 
function (Allen, Buxton, Wong, and Courchesn,1997 
46

) demonstrated differential activation within the 
cerebellum for visual attention and motor performance 
in healthy participants. This double dissociation 
suggested the cerebellum contains distinct regions for 
attention that are independent of motor movement 
regions. The findings are somehow in line with our 
results which indicate there are different types of 
alteration within the cerebellum region in course of 
ADHD. 
In addition, functionality of the left parahippocampal 
gyrus shows increase in terms of closeness and 
decrease in terms of betweenness and degree 
centrality in ADHD individuals. The parahippocampal 
gyrus is a grey matter cortical region of the temporal 
lobe.  There is evidence for structural (Kobel et al., 
2010

47
) and functional (Shafritz et al., 2004; Tamm et 

al., 2004
48

) abnormalities in the temporal lobe in 
ADHD.  Kobel et al. 

49
 found that boys with ADHD 

showed smaller gray matter volumes and decreased 
magnetization transfer imaging values in the temporal 
lobe. They speculated that the temporal lobe might 
play a key role in the etiology of ADHD. During the 
divided attention task, adolescents with ADHD show 
significantly less activation in the middle temporal 
gyrus than TPDs and only the left middle temporal 
lobe activation was correlated with accuracy on the 
visual selective tasks (Shafritz et al., 2004

50
). 

Moreover, several neuroimaging studies have shown 
decreased gray matter volume or thickness in left 
parahippocampal gyrus (Carmona et al, 2005

51
; 

Abernethy et al, 2002
52

). 
Our result showed that centrality of the right parietal 
region is also decreased in ADHD individuals. These 
finding are consistent with studies of ADHD that report 
abnormal patterns of activation in parietal regions 
(Dickstein et al, 2006

53
) during working memory, 

(Burgess et al, 2010)
54

 attentional (Schneider et al, 
2010

55
) or response inhibition tasks (Dillo et al, 

2010
56

). Decreased betweenness in the parietal 
regions is consistant with several fMRI studies that 
show aberrant activity in the attention system in 
ADHD (Tamm et al., 2006

57
; Cao et al., 2008

58
). 

Previously, Cao et al. (
59

) showed that activation of the 
left inferior parietal lobe decreased in ADHD during an 
alerting task as well as during a Go / No Go task 
reported. Children with developmental coordination 
disorder (DCD) exhibit increased connectivity between 
the left middle frontal and inferior parietal cortices and 
reduced connectivity between the right striatum and 
parietal cortex (Querne et al., 2008

60
). These findings 

suggest that functional connections between the 
striatum and parietal cortex, areas that integrate 
sensory information in motor responses, are altered in 
children with DCD. 
A few studies have been conducted on the function of 
left palladium. The palladium is a structure within 
the basal ganglia. In ADHD patients, reductions in 
volume have been observed in terms of total cerebral 
volume specifically at prefrontal cortex, basal ganglia, 
dorsal anterior cingulate cortex, corpus callosum and 
cerebellum (Emond et al, 2009

61
). Compensatory 

networks including basal ganglia, insula and 
cerebellum have been implicated for relative lower 
cognitive load tasks in ADHD patients (Castellanos et 
al, 2002

62
). DTI studies have also revealed 

developmental changes in cortical white matter 
pathways in prefrontal regions and in pathways 
surrounding the basal ganglia and cerebellum in 
patients with ADHD, which presumably reflect 
decreasing myelination of axons. It is believed that 
these changes cause a decrease in speed of neuronal 
communication (D‟Agati et al, 2010

63
). 

The right paracentral lobule includes portions of the 
frontal and parietal lobes. Neurons in this regions are 
concerned with motor and sensory innervations of the 
contralateral lower extremity that contribute to 
regulation of physiological functions such as 
defecation and micturition (Totowa, 2003)

64
. Based on 

our findings, centrality of this region (betweenness) is 
decreased more significantly observed within fronto-
striatal and fronto-parietal circuits (Steven et al, 
2006)

65
. 

The results obtained in other brain regions are 
consistent with the findings of yassin and colleague

66
. 

They studied differences in brain function at rest 
between children and adolescents diagnosed with and 
without ADHD by using data acquired by single-
photon emission computerized tomography (SPECT). 

https://en.wikipedia.org/wiki/Grey_matter
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Basal_ganglia
https://en.wikipedia.org/wiki/Motor_neuron
https://en.wikipedia.org/wiki/Sensory_neuron
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Their results showed significant differences for the 
angular gyrus, calcarine fissure, caudate nucleus, 
cerebellum, cuneus gyrus, frontal lobe, fusiform gyrus, 
Heschl's gyrus, lingual gyrus, occipital lobe, 
paracentral lobule, parahippocampal area, parietal 
lobe, post central gyrus, precuneus, rolandic 
operculum, supplementary motor area, supramarginal 
gyrus, and temporal lobe (yassin  et al, 2014)

67
. In our 

study, frontal and temporal lobes were found to have 
the highest number of areas that were significantly 
different between the two groups. Temporal lobe has 
the most number of areas with significant differences 
between ADHDs and TPDs.  
The results of this study suggest multiple brain 
regions are associated in ADHD, particularly the areas 
of the frontal and temporal lobes. This indicates the 
functional abilities of the frontal and temporal lobes 
are implicated in children and adolescents with ADHD 
which may account for their difficulties in motor 
control, problem solving and self-regulation difficulties. 
However, other brain areas were involved as well 
indicating while there is heavy frontal and temporal 
involvements; it is not restricted to these areas. 
Overall, lower functional activity in children with ADHD 
(Hamilton et al., 2008

68
; Pavuluri et al., 2009

69
) is 

typically interpreted as evidence of disruption in motor 
and attentional circuits. On the other hand, higher 
functional activity is also considered as deficit in 
neuronal branching (Li et al., 2011; Silk et al., 2009

70
). 

Nevertheless, ADHD individuals show a delayed 
cortical maturation which may associate with different 
developmental trajectories in adolescence and 
beyond (Shaw et al, 2009

71
). The grey matter peaks 

are shifted by about 3 years in ADHDs compared to 
TPDs (Shaw et al, 2006

72
). The delay is most 

prominent in prefrontal regions which are important for 
control of cognitive processes including attention and 
motor planning (Shaw et al, 2007)

73
. These finding 

could provide an insight into the pathophysiological 
mechanisms of ADHD from a network analysis 
perspective. 
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