Mehdizadehfar, V., Ghassemi, F., Fallah, A., Mohammad-Rezazadeh, I., & Pouretemad, H. (2020). Brain connectivity analysis in fathers of children with autism. Cognitive Neurodynamics, 14(6), 781-793.
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which changes in brain connectivity, associated with autistic-like traits in some individuals. First-degree relatives of children with autism may show mild deficits in social interaction. The present study investigates electroencephalography (EEG) brain connectivity patterns of the fathers who have children with autism while performing facial emotion labeling task. Fifteen biological fathers of children with the diagnosis of autism (Test Group) and fifteen fathers of neurotypical children with no personal or family history of autism (Control Group) participated in this study. Facial emotion labeling task was evaluated using a set of photos consisting of six categories (mild and extreme: anger, happiness, and sadness). Group Independent Component Analysis method was applied to EEG data to extract neural sources. Dynamic causal connectivity of neural sources signals was estimated using the multivariate autoregressive model and quantified by using the Granger causality-based methods. Statistical analysis showed significant differences (p value < ۰.۰۱) in the connectivity of neural sources in recognition of some emotions in two groups, which the most differences observed in the mild anger and mild sadness emotions. Short-range connectivity appeared in Test Group and conversely, long-range and interhemispheric connections are observed in Control Group. Finally, it can be concluded that the Test Group showed abnormal activity and connectivity in the brain network for the processing of emotional faces compared to the Control Group. We conclude that neural source connectivity analysis in fathers may be considered as a potential and promising biomarker of ASD.